

SIXTH GRADE EARTH

1 WEEK LESSON PLANS AND ACTIVITIES

UNIVERSE CYCLE OVERVIEW OF SIXTH GRADE

UNIVERSE

WEEK 1.PRE: Exploring how the Universe may have evolved.LAB: Comparing the night sky with zodiac signs.POST: Comparing the different components of the Universe.

SOLAR SYSTEM

WEEK 2.

PRE: *Exploring the structure of our Sun.* LAB: *Calculating the weight of objects on different planets.* POST: *Exploring astronomical themes in songs.*

EARTH

WEEK 3.

PRE: Comparing the motion of the Sun, Earth, and Moon. LAB: Discovering how the tilt of the axis causes the seasons. POST: Analyzing literature with descriptions about Earth.

GEOGRAPHY

WEEK 4.

PRE: Discovering uses for maps. LAB: Exploring military strategies using a map. POST: Creating a three dimensional landscape.

UNIVERSE CYCLE - EARTH (6)

PRE LAB

OBJECTIVES:

- 1. Exploring tides.
- 2. Comparing the motion of the Sun, Earth, and Moon.

VOCABULARY:

axis equator tides tilt revolve rotate

MATERIALS:

Inflatable World Globes tennis ball, or similar sized ball flashlight worksheet

Low tide

BACKGROUND:

One consequence of motions of the Sun, Moon, and Earth is the creation of the tides. A tide is the alternating rise and fall of the ocean's surface. Humans have noticed this change since early times. The tides were initially explained through myths and tales involving supernatural forces. Later, early scientists like Poseidonius of Syria and Pytheas

of Marseilles saw a connection between the Moon and the changing ocean levels. Aristotle, Pliny and Caesar also noticed that the Sun had an affect on the level. However, the reasons for these connections remained a mystery.

The problem was solved by Sir Isaac Newton in the latter part of the 17th century. He proposed that the tides were caused by the

Tides caused by the Moon. Note that the length of the arrows is proportional to the strength of gravitational force.

Students learn how tides are created and review Earth's motion.

gravitational interaction between the Earth, Sun, and Moon. The basic premise of Newton's explanation can be understood by first considering just the gravitational attraction and motions of the Earth and the Moon. In this system, at each point on the Earth, there are generally two high and two low tides per day. As shown in the picture on the next page, the gravitational attraction of the Moon causes the Earth's oceans to bulge upward toward the Moon. The bulge occurs because the part of the ocean closest to the Moon is pulled more; remember that the gravitational attraction between two objects is greater if they are closer together. On the opposite side of the Earth, inertia from the Earth's rotation on its axis raises a second bulge in the ocean, opposite the first one. To accommodate these two rises in ocean level, ocean level drops between them, as shown in the diagram. These two bulges and low points remain essentially stationary. As the Earth rotates, completing one spin in 24 hours, each point on the Earth's surface passes under both bulges and low points. We experience the resulting rise and fall of ocean level as the tides.

The tides are actually much more complex than this simple explanation. Other

Earth

factors in the rise and fall of the tides include: 1) the gravitational attraction of the Sun; 2) the changing distances between the Earth, Moon, and Sun; 3) variations in the Earth's rotation; and 4) the shape of the Earth's ocean basins Sp and coastlines.

Of these, the most

Spring Tide - Maximum high and low tides occur when the Moon

Spring Tide - Maximum high and low tides occur when the Moon and Sun line up. Note: the Moon can also be on the other side of the Earth.

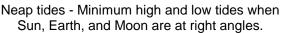
significant is the influence of the Sun. When the Sun and Moon are aligned, their gravitational attraction on the Earth's ocean work together to produce extremely high and low tides. These are a called spring tides. When the Moon and Sun are at right angles, their gravitational attraction works at right angles, producing tides of minimum height. These are called neap tides.

PROCEDURE:

1. Use the following demonstrations to review how the Earth moves in space and what happens during its movements.

A. Hold the globe upright and review the parts of the Earth. Ask students to show the locations of the North and South Poles, the equator, and the Earth's axis. Have them point out lines of longitude and latitude.

B. Ask students what word(s) describe the shape of the Earth. Ask them if the Earth is a perfect sphere. (No: as the Earth rotates, spin causes the polar regions to flatten out and equatorial areas to bulge, making the Earth vaguely egg- or pear-shaped.)


C. Hold the globe with the axis upright. Have one student shine the flashlight on

the globe. Ask them what the light represents (the Sun). Ask the students if the Earth is correctly positioned in space. (No, the

Earth's axis is tilted 23 1/2 degrees.) Next, tilt the globe so that the North Pole is inclined toward the "Sun".

D. Ask the students what difference this makes to temperatures on the Earth's surface. (The North Pole and Northern Hemisphere receive more direct light, so are warmer, while the South Pole and Southern Hemisphere receive less, so are cooler.) This is the basic cause of the seasons, which will be covered more in Lab.

E. Ask the following questions about motions in the Earth/Moon/Sun system. Demonstrate the answers. What revolves around the Sun? (the Earth with its Moon.) What revolves around the Earth? (The Moon). Which bodies rotate? (the Earth, Moon, and Sun)

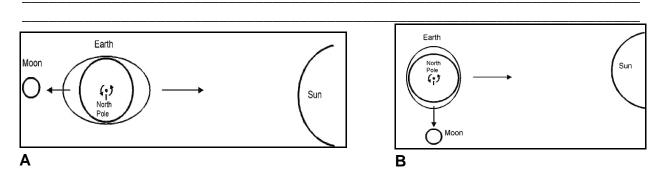
- 2. Here are other, optional general questions:
 - a. Is the Sun a planet? (No, a star.)
 - b. Is the Moon a planet? (No, a satellite.)
 - c. How long does it take for Earth to make one full rotation? (24 hours.)
 - d. How long does it take for Earth to revolve one time around the Sun? (365

1/4 days or 1 year.)

e. How long does it take the Moon to rotate once around the Earth? (almost

28 days.)

- f. How long does it take for the Moon to revolve around the Earth? (almost
- 28 days.)
- g. Does the Sun revolve around anything? (Yes the core of the Milky Way


Galaxy.)

3. Explain tides to the students.

UNIVERSE CYCLE - EARTH (6) PRE LAB

Fill in the answers to the following review questions.
Describe the shape of the Earth.
What is the correct tilt of the Earth's axis?
How does the tilt of the axis effect temperatures on the Earth's surface?
What revolves around the Sun?
What revolves around the Earth?
Which bodies rotate?
Is the Sun a planet?
Is the Moon a planet?
How long does it take for the Earth to make one full rotation?
How long does it take for the Earth to revolve one time around the Sun?
How long does it take the Moon to rotate once around the Earth?
How long does it take for the Moon to revolve around the Earth?
Around what does the Sun revolve?

Explain the difference between a neap tide and spring tide by using the pictures below. Identify which one is neap and spring.

UNIVERSE CYCLE - EARTH (6)

LAB

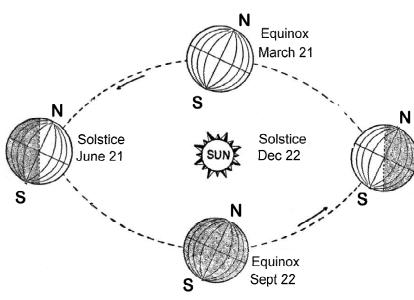
OBJECTIVE:

1. Exploring rotation and revolution.

2. Discovering how the tilt of the axis causes the seasons.

Eart

VOCABULARY:


axis northern hemisphere season southern hemisphere Tropic of Capricorn Tropic of Cancer

MATERIALS:

Inflatable World Globes Planetarium (Orrery) Model

BACKGROUND:

The seasons are caused by the positioning of the Earth with respect to the Sun as it revolves around the Sun, and by the tilt of its axis. This will cause different seasonal climates throughout the Earth. For example, during June 21, it will be the

summer solstice in the northern hemisphere, but in the southern hemisphere it will be the winter solstice.

The varying distance of the Earth from the Sun is not an important factor in seasonal changes as much as is the intensity of solar energy that strikes the earth's surface. The intensity depends mostly on the angle at which it strikes the Earth's surface. The steeper the angle, the more it is

Students use models to recreate the reason for seasons.

Sunlight

Summer in the Southern Hemisphere: the North Pole tilts

away from the Sun.

Math/Science Nucleus © 1990, 2001

concentrated. Solar energy is concentrated most on the Northern Hemisphere during its summer season when the north axis is titled toward the Sun. More hours of daylight also occur at this time (hence, summers are warmer than winter). Simultaneously, the Southern Hemisphere is experiencing winter. Six months later, when the Earth is on the opposite side of its orbit, the north end of the axis is tilted away from the Sun and it has its winter. Fall and spring occur in between these two extremes when the axis is tilted neither toward or away from the Sun.

PROCEDURE:

1. Explain the origin of the seasons to the students. Remember seasons are caused by the quality of sunlight, and not climatic conditions.

2. In the lab, students first draw pictures showing summer and winter in the Northern Hemisphere. They should then use the model planetarium to understand the motions which create the seasons. Be sure the students can find the locations on the globe that are listed in the chart.

3. ANSWERS:

Part 1.

1. opposite; 2. opposite; 3. No, because the Moon does not radiate heat; 4. Yes, in summer the rays are direct, in winter they are indirect; 5. angle, because the Earth's axis is tilted.

Fait 2.				
	Dec. 21	Mar. 21	June 21	Sept. 23
North Pole	24 hrs darkness	12/12	24 hrs light	12/12
Arctic	24 hrs darkness	12/12	24 hrs light	12/12
Tropic of Cancer	more night than day	12/12	more day than night	12/12
Equator	12/12	12/12	12/12	12/12
Tropic of Capricorn	more day than night	12/12	more night than day	12/12
Antarctica	24 hrs light	12/12	24 hrs darkness	12/12
South Pole	24 hrs light	12/12	24 hrs darkness	12/12

Part 2.

UNIVERSE CYCLE - EARTH (6) LAB

PROBLEM: Are seasons the same around the Earth?

PREDICTION:__

PROCEDURE: MATERIALS: PLANETARIUM. Move the model to try and figure out the

following questions and to fill in

the chart below.

1. Which two ways does north point on the Earth in the Northern

Hemisphere in June and

December? Draw a picture.

2. Does the Earth's axis point the opposite direction or the same direction in the Southern

Hemisphere? _

3. Does the position of the Moon affect the seasons? Why?

4. Does the distance of the Earth to the Sun change with the seasons?_____

5. Does the angle at which the Sun strikes the Earth's surface change with the seasons?_____

6. Which affects the seasons the most, distance or angle at which the sun strikes?

Use the planetarium model to figure out how much sunlight there is at these location. To fill in the chart below use the following terms: 24 hrs darkness, 24 hrs of light, more day than night, 12 hrs dark/12 hrs light (12/12), Sun directly overhead, mixed hours of day and night.

	Dec. 21	Mar. 21	June 21	Sept. 23
North Pole				
Arctic				
Tropic of Cancer				
Equator				
Tropic of Capricorn				
Antarctica				
South Pole				

CONCLUSION: Are seasons the same all around the world?_____

UNIVERSE CYCLE - EARTH (6)

POST LAB

Students use literature to extract information.

OBJECTIVES:

- 1. Reading excerpts from Hawaii by James A. Michener
- 2. Analyzing literature with descriptions about Earth.

VOCABULARY:

Earth literature

MATERIALS:

worksheets

BACKGROUND:

James Michener, was one of the most prolific authors of the 20th century. His first collection of stories, *Tales of the South Pacific* (1947) remains one of his most popular books. This book was the basis of the Broadway musical South Pacific. His other books include *Hawaii* (1959), *The Source* (1965), *Centennial* (1974), *Chesapeake* (1978), *The Covenant* (1980),

Poland (1983) and *Space* (1989). James Michener was best known for his novels about exotic places. His writings wove human stories against the backdrop of many locations throughout the world, and even space! Michener also scientifically described the places about which he wrote.

PROCEDURE:

This exercise gives students a good example of somewhat scientific description in popular fiction. It gives them a chance to bridge their education in science and in English.

1. Either read the excerpt as a class or have students read it individually.

2. Have the students answer the questions on the worksheet, either in class or as homework.

3. ANSWERS:

- 1. The Pacific Ocean
- 2. Yes, basically describes conditions but uses poetic language.
- 3. Glaciers
- 4. The vastness of the Pacific, the loneliness and how with time the Earth changes.
- 5. white caps, blowing water
- 6. in its deepness
- 7. moved by
- 8. large
- 9. through the universe
- 10. violent
- 11. forever
- 12. large waves
- 13. sticking out
- 14. large

UNIVERSE CYCLE - EARTH (6) POST LAB

Read the excerpt from Hawaii, and answer the questions on the worksheet.

HAWAII

by James A. Michener

Millions upon millions of years ago, when the continents were already formed and the principal features of the Earth had been decided, there existed, then as now, one aspect of the world that dwarfed all others. It was a mighty ocean, resting uneasily to the east of the largest continent, a restless ever-changing, gigantic body of water that would later be described as Pacific.

Over its brooding surface immense winds swept back and forth, whipping the waters into towering waves that crashed down upon the world's seacoasts, tearing away rocks and eroding the land. In its dark bosom, strange life was beginning to form, minute at first, then gradually of a structure now lost even to memory. Upon its farthest reaches birds with enormous winds came to rest, and then flew on.

Agitated by a moon stronger than now, immense tides ripped across this tremendous ocean, keeping it in a state of torment. Since no great amounts of sand had yet been built, the waters where they reached shore were universally dark, black as night and fearful.

Scores of millions of years before man had risen from the shores of the ocean to perceive its grandeur and to venture forth upon its turbulent waves, this eternal sea existed, larger than any other of the Earth's features, vaster than the sister oceans combined, wild, terrifying in its immensity and imperative in its universal role.

How utterly vast it was! How its surges modified the very balance of the Earth! How completely lonely it was, hidden in the darkness of night or burning in the dazzling power of a younger sun than ours.

At recurring intervals the ocean grew cold. Ice piled up along its extremities, and so pulled vast amounts of water from the sea, so that the wandering shoreline of the continents sometimes jutted miles farther out than before. Then for a hundred thousand years, the ceaseless ocean would tear at the exposed shelf of the continents, grinding rocks into sand and incubating new life.

Later, the fantastic accumulations of ice would melt, setting cold waters free to join the heaving ocean and the coasts of the continents would lie submerged. Now the restless energy of the sea deposited upon the ocean bed layers of silt and skeletons and salt. For a million years the ocean would build soil, and then the ice would return; the waters would draw away, and the land would lie exposed. Winds from the north and south would howl across the empty seas and lash stupendous waves upon the shattering shore. Thus the ocean continued its alternate building and tearing down.

Master of life, guardian of the shorelines, regulator of temperatures and heaving sculptor of mountains, the great ocean existed.

UNIVERSE CYCLE - EARTH (6) POST LAB

1. What ocean is James Michener describing?_____

2. Is this an accurate description of this ocean? Why or why not?

3. In the sixth paragraph, what is Michener describing when he says, "Ice piled up along its extremities,"?

4. What is the introduction to Hawaii describing?

Define the following words or phrases:

5.	"whipping the waters" (2nd paragraph)
6.	"dark bosom" (2nd paragraph)
7.	agitated (3rd paragraph)
8.	tremendous (3rd paragraph)
9.	universally (3 rd paragraph)
10.	turbulent (4th paragraph)
11.	eternal (4th paragraph)
12.	surges (5th paragraph)
13.	jutted (6th paragraph)
14.	stupendous (7th paragraph)